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Abstract. A method for solving exactly the Falicov-Kimball model in the limit of vanishing 
conduction band is proposed. By means of the path integral formalism, a general procedure 
for the evaluation of the exact n-point Green functions at a finite temperature is developed. 
The results obtained here represent a starting point for a perturbation expansion in the 
conduction electron band width. 

1. Introduction 

The electronic properties of rare-earth and transition-metal compounds have been 
intensively studied for a long time. When the external conditions (temperature, pressure, 
composition) are varied, compounds of this type often undergo phase transitions involv- 
ing variation in the filling of the electron levels. In most cases, these transitions are of 
the insulator-to-nietal or semiconductor-to-metal type. Also there is often a change in 
magnetic properties due to the vanishing of localised magnetic moments, so that these 
transitions can be of the magnetic-to-non-magnetic state type. 

One of the most striking examples of such a behaviour is provided by the samarium 
chalcogenides. The compound SmS is a semiconductor which exhibits a sharp transition 
(first order) to a metallic state when the pressure is raised to 6.5 kbar [l]. On the 
contrary, in the compounds SmSe and SmTe, which at normal pressure have crystal 
structures and electric and magnetic properties very similar to those of SmS, the same 
kind of transition takes place continuously (second-order transition) over a broad 
pressure range from 0 to 50-60 kbar [ 2 ] .  

Several theoretical models start from the idea that these phenomena are due to the 
delocalisation o f f  electrons into d-conduction band states. Among them, the model 
proposed by Falicov and Kimball (FK) [3] provides a natural interpretation of the above- 
mentioned transitions. In order to explain also the existence in rare-earth compounds 
of non-integral valence states, an extended FK (EFK) model has subsequently been 
introduced [4], including the possibility of hybridisation between localised and itinerant 
states. 

In the EFK model the Hamiltonian is given by the periodic Anderson [ 5 ]  Hamiltonian 
with an extra term corresponding to the Coulomb interaction between localised and 
conduction electrons. This term is known to be responsible for an abrupt transition 
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between two valence states and then it is crucial in the explanation of the behaviour of 
those compounds which exhibit first-order metal-to-insulator transitions [6]. 

Since an exact determination of eigenfunctions and eigenvalues of this Hamiltonian 
presents insurmountable difficulties, many approximate theoretical approaches have 
been proposed in order to provide a qualitative understanding of the model, at least for 
special ranges of values of the parameters involved. Among them, we recall, for example, 
approaches which treat the hybridisation perturbatively [6], mean-field theories based 
on the Hartree-Fock approximation [4, 71, and theories exploiting the so-called alloy 
analogue approximation [8]. 

In this paper, by making use of the path integral method developed in [9], we shall 
derive an exact solution of the EFK model in the limit of zero-width conduction band. In 
a future paper, we shall introduce perturbatively the kinetic term for the conduction 
electrons. 

This approach is motivated by the fact that many interesting features of the model 
seem to be related to a simultaneous non-perturbative treatment of the on-site Coulomb 
interaction between localised electrons and between localised and conduction electrons 
and the hybridisation between conduction band and localised electron states. 

We wish to stress that the limit of infinitely narrow conduction band width does not 
affect the metal-to-insulator transition, as pointed out for example in [5] .  Also, in the 
approximate form the model still retains the essential features of the mixed valence 
properties of some real systems [lo], and for a special range of values of the parameters 
involved it is equivalent to the narrow-band version of the Kondo Hamiltonian [ l l ] .  

2. Themodel 

Let us consider the EFK model for zero-width conduction band: 

H =  H F K  + HA 

where 

H F K  = GVf> (c'c) 

H* = & f ' f  + vcfc + c t f )  + ufrfrf+Jfl 

is the so-called FK term, 

is the Anderson Hamiltonian where the kinetic energy of conduction electrons is put 
equal to zero and 

Here c: , c, (f d ,  fs) are the creation and annihilation operators for conduction (localised) 
electrons with spin s; E is the f-electron energy; V and U are the hybridisation and the 
on-site Coulomb repulsion energies, respectively. 

Since different sites are decoupled, it is sufficient to consider one-impurity case. The 
model has finite degrees of freedom and can be solved completely in terms of 16 X 16 
matrices by diagonalising the Hamiltonian (1). 

Indeed, noting that the total number of particles 

N = f ' f  + C'C 
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Table 1. Eigenstates of H. 

A I  = [ ( E  + U)' + 4V2]"*, A 2  = (E'  + 4V2)"*, andx,,y,, z ,  ( a  = 7 ,  10, 13) are given by equations (11) 

and the total spin 

s = ft(a/2)f + c?(a /2 )c  

are conserved quantities, the eigenstates of H can be classified as shown in table 1. The 
quantities zl, z 2 ,  2 3  appearing there are the solutions of the equation 

z3  - ( 3 ~  + G + u)z2 + [ ( 2 ~  + U ) ( &  + G) - 4v2]2 + 2v2(2& + U )  = 0. (3) 
Knowledge of the energy levels allows us to determine the partition function and 

then all the thermodynamics quantities can be easily computed. Also, the thermal Green 
functions can be calculated by the standard method implying the computation of eight 
16 X 16 matrices. In this paper, we preserit a solution of the model in more compact 
form by using the path integral formalism and we give the explicit expression for 
the two-point Green function for localised electrons. Let us consider the generating 
functional for temperature Green functions: 

exp(-PH) Texp dz [J+(t)f(z) + f i ( t ) J ( t )  + c t ( t ) K ( t )  

Here Torders the operators according to their value of t, with the smallest at right, and 

are the sources associated with f and c ,  respectively. 
If we divide the interval 0 < T < /3 into Nparts, it is possible to show that Z[J,  K ]  can 
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be written as 

Z[J, K ]  = lim ( Z c N , [ J ,  K ] )  
N-* = 

where 
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- ua a -bg+u2b-x  -ub 

U2b -2ub b - x  

= O .  
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We now pass to the evaluation of the matrix P, which can be shown to have the 
following non-vanishing elements: 

p l l  = p66 = p l l . l l  = p16,16 = 

P22 = P33 = Pjj = P 9 9  = cos y 

P2j = P3, = - P,, = - P93 = sin y 

.P,k = xu p,, = Y ,  Pa.10 = - Y ,  Po, 13 = z ,  
where 

sin y =  [{l - (S22  - S 5 5 ) / [ ( S 2 2  - S5j)2 +4S&,]1/2}/2]1/2 

sin q = -U - ( s ~ ~  - ~ 1 4 , ~ ~ ) / [ ( ~ ~ ~  - ~ 1 4 . 1 4 ) ~  + 4 ~ ; , ~ ~ 1 1 ~ 2 ~ 1 / 2  (10) 

and the quantities xu,  y,, 2, ( a  = 7 ,  10, 13) are determined by the following equations: 

(1 - O')X ,  + ~ U U , V ,  + U2bZ, = 0 

uax, + ( a  - bg + u2b + O a ) y U  + ubz,  = 0 

u2bx,  + 2uby, + ( b  - Oa) tu  = 0 
together with the orthogonality condition 

In the limit N +  cc the solutions of this system take the form 
xoxb + 2Yuyb + z o z b  = 

(x,)2 = 4V2E:/D 

( y a y  = Ei(2& + U - E,)2/D (11) 

( z , ) ~  = 4V2(2& + U - E,)2 /D 

D = 4V2Ei  + 2(2V2 + E : ) ( ~ E  + U - E,)2 
where 

and the energies E, are again the roots of equation (3) .  Furthermore, we have 

lim (sin y )  = [ ( A l  + E + U)/2A1]1 /2  
N+ = 

lim (sin q) = - [ ( A 2  + E ) / ~ A ~ ] ' / ~  
N-+ x 

where A and A 2  are given by equations (10). 
Knowledge of P allows us to evaluate the thermal n-point Green functions. In order 

to show this, we recall that their analytic expressions can be derived from the relation 
[91 

W m , ( z n > v m n - l ( r n - l ) .  * . y m , ( r l ) >  

=Tr[exp(-PH) ' J " , ( t n ) v m , - I ( r n - l ) .  . v m l ( T 1 )  

= Z[0, 01-l exp[ -P(2& + U)]  

x Tr[X"l(zl - z, +P). . . X m n - l ( t , - l  - r , , - 2 ) X m n ( r ,  - z,-l>] (13) 
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where we have defined 

and t k  < t k + l ( k  = 1,.  , . , n - l) .The symbol X ' ( T )  denotes a 16 X 16 matrix whose 
elements are 

where the energies Em are given in table 1 and the elements of the matrix 
can be readily obtained from equations (9) and (12). 

= lim,,,P 

Also, the only non-vanishing elements of the matrices 6' = limN+,B' are 

B i 5  = B& = B i 7  = B a g  = B;,,, = B:O,14 = B i 1 . 1 5  

8 3  - E 3  

= B t 2 , 1 6  = 1 

19 - 2, lO = B!, 11 = B i ,  12 = - B:, 13 = - Bz, 14 

- - B 3  
7.15 = - B38.16 = - 

12 - 34 = -gz6 = -85 - - B 5  B 5  - B 5  

B J  13 - - - g 7  24 = -BZ7 = B 7  68 = -B: .11  = B!0 ,12  

78 - 9, lO = - B i l , 1 2  

= B:3 ,14  = B : 5 ,  16 = 1 

= B;3,15 = - B 7  14,16 = 1* 

From the relations 
g1 = ( B 2 ) f  g 3  = (B"f g5 = (@)f  8 7  = ( B 8 ) f  
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one immediately obtains the non-vanishing elements of B2, B4,  B6 and B'. Combining 
equations (13), (15) and (16), the thermal n-point Green functions can be computed. It 
is worth noting that all the computations are reduced to perform products of the sparse 
matrices (at most three elements different from zero on each line) and 8'. 

3. Two-point Green function at a finite temperature 

Since n-point Green functions including in a non-perturbative way the effects of G, V 
and U have never been calculated, as an application of our method in this section we 
compute explicitly the exact two-point Green function for localised electrons. Putting 
n = 2, ml  = 2 and m2 = 1 in equation (13), we have 

C>(t2  - t l )  = (fr (t2lftr ( t l ) )  
= Z[O,O]-l exp[ -@(2.5+ U)] Tr[X2(t l  - t 2  +/3)X1(t2 - z,)]. (17) 

Evaluating the trace in this equation by means of equation (14), we obtain 

G,(z) = Z[O, 01-l exp[ -/3(2.5 + U)] 

x [ exp[ -@(e2 + ~ G ) I  sin2 e exp[t(e2 - 2 ~ 1 1  

+ exp[ -@(e, + 2G)] cos2 I9 exp[t(e5 - 2G)] 

+ (4) exp[ -@(e4 + G)] cos2 I9 exp[s(e, - e2 - C)] 

+ (P) exp[ -@(e4 + G)] sin2 Bexp[z(e4 - e5 - G)] 

+ ~XP(  -@el6) cos2 q exp[z(e16 - e8)i 

exP(-/3ei6) sin2 q exP[r(ein - el411 
+ (P) exp( - @e') sin2 q exp[t(e8 - e4 - G)] 

+ (P) exp(-@e14) cos2 q exp[z(e14 - e4 - G)] 

+ 2 exp( -@e,) (y, cos t9 + za sin 

+ exp( -@ea) ( y a  sin 0 - 2, cos 

exp[t(e, - e2 - 2G)] 

exp[z(e, - e5 - 2G)] 

a 

a 

+ 2 exp(-@e,) ( X U  COS ~ 1 -  ~a sin q12 e x ~ [ ~ ( e B  - ea11 
a 

+ E exp(-Be,,> (xa sin v + Y O  cos d 2  exp[t(e14 - e 4  (18) 

where z = z2 - tl, e, = E, - 2.5 - U and a = 7, 10, 13. Starting from equation (18) the 
causal temperature Green function 

G(r2 - T I )  = - (T[fy ( t 2 ) f ;  ( t l ) l )  
can be easily calculated by means of the formula 

G( t )  = - [@(t)G,( t )  - e ( -z )G>( t  + @)I. 

Knowledge of the advanced temperature Green function (18) allows us to evaluate 
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the spectral density p ( w )  from which the real-time Green functions can be easily 
obtained. Denoting by 0, = (2n + l)n/P the Matsubara frequencies, the Fourier trans- 
form of equation (18) gives 

211 

where we have defined 
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By means of this result the Fourier transform of the retarded and the advanced real-time 
Green functions can be obtained using the integral representation 

All these results will be used for a perturbative expansion of the conduction electron 
band width which will be the subject of a future paper. 
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Appendix 

Al .  Non-vanishing elements of the matrix M[O, O] 
MI1 = 1 - 2u2a + u4b 

M22 = M33 = 1 - u2a 

M25 = M52 = M39 = Mg3 = u(a - U2b) 

M44 = 1 

= M74 = - M 4 ,  = - Mlo, = ua 

M4,13 = M13,4 = - M7,10 = - M10,7 = 

M55 = M66 = M g 9  = M1l,ll  = a - u2b 

M77 = M 8 8  = MIO, 10 = M12, 12 = a 

M7,13 = M13,7 = - M8.14 = - M14,8 = ub 

M10.13 = M13,10 = M12.15 = M15.12 = -ub 

M13,13 = M14, 14 = M15, 15 = M16, 16 = b. 
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- ua a + u 2 b - x  -ub 

U'b -2ub b - x  

8357 

= O .  
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